Saturday 20 October 2012

Electric eel

The electric eel (Electrophorus electricus) is an electric fish, and the only species of the genus Electrophorus. It is capable of generating powerful electric shocks of up to 600 volts, which it uses for hunting and self-defense. It is an apex predator in its South American range. Despite its name it is not an eel but rather a knifefish.


The electric eel has three abdominal pairs of organs that produce electricity: the main organ, the Hunter's organ, and the Sach's organ. These organs make up four-fifths of its body, and are what give the electric eel the ability to generate two types of electric organ discharges (EODs): low voltage and high voltage. These organs are made of electrocytes, lined up so that the current flows through them and produces an electrical charge. When the eel locates its prey, the brain sends a signal through the nervous system to the electric cells. This opens the ion channel, allowing positively-charged sodium to flow through, reversing the charges momentarily. By causing a sudden difference in voltage, it generates a current. The electric eel generates its characteristic electrical pulse in a manner similar to a battery, in which stacked plates produce an electrical charge. In the electric eel, some 5,000 to 6,000 stacked electroplaques are capable of producing a shock at up to 500 volts and 1 ampere of current (500 watts). Such a shock could be deadly for an adult human. Electrocution death is due to current flow; with the level of current that can be fatal in humans depending on the path that the electric current takes through the human body, human heart fibrillation (which is reversible via a heart defibrillator) can take place from currents ranging from 70 to 700 mA and higher.
The Sach's organ is associated with electrolocation. Inside the organ are many muscle-like cells, called electrocytes. Each cell can only produce 0.15 V, though working together the organ transmits a signal of about 10 V in amplitude at around 25 Hz. These signals are what is emitted by the main organ and Hunter's organ that can be emitted at rates of several hundred Hz.
The electric eel is unique among the gymnotiformes in having large electric organs capable of producing lethal discharges that allows them to stun prey.There are reports of this fish producing larger voltages, but the typical output is sufficient to stun or deter virtually any other animal. Juveniles produce smaller voltages (about 100 volts). Electric eels are capable of varying the intensity of the electrical discharge, using lower discharges for "hunting" and higher intensities for stunning prey, or defending themselves. When agitated, it is capable of producing these intermittent electrical shocks over a period of at least an hour without signs of tiring.

Wednesday 17 October 2012

Flying Fish

   While I was young; I saw a picture of a fish with wings. I asked someone near to me about it & they told me that it was a flying fish. But later I thought that it may be some illusionary story. But I had to believe it because I saw a live fish flying in front of my eyes; our ship was nearing to Agatti Island of the Lakshadweep in November 2011

Exocoetidae is a family of marine fish in the order Beloniformes of class Actinopterygii. Fish of this family are known as flying fish. There are about sixty-four species grouped in seven to nine genera. Flying fish can make powerful, self-propelled leaps out of water into air, where their long, wing-like fins enable them to glide for considerable distances above the water's surface. This uncommon ability is a natural defense mechanism to evade predators.


Flying fish live in all of the oceans, particularly in tropical and warm subtropical waters. Their most striking feature is their pectoral fins, which are unusually large, and enable the fish to hide and escape from predators by leaping out of the water and flying through air a few feet above the water's surface. Their flights are typically around 50 meters (160 ft).

To glide upward out of the water, a flying fish moves its tail up to 70 times per second. It then spreads its pectoral fins and tilts them slightly upward to provide lift. At the end of a glide, it folds its pectoral fins to reenter the sea, or drops its tail into the water to push against the water to lift itself for another glide, possibly changing direction. The curved profile of the "wing" is comparable to the aerodynamic shape of a bird wing. The fish is able to increase its time in the air by flying straight into or at an angle to the direction of updrafts created by a combination of air and ocean currents.
Genus Exocoetus has one pair of fins and a streamlined body to optimize for speed, while Cypselurus has a flattened body and two pairs of fins which maximizes its time in the air. From 1900 to the 1930s, flying fish were studied as possible models used to develop airplanes.
Exocoetidae feed mainly on plankton. Predators include dolphins, tuna, marlin, birds, squids and porpoises.

Wednesday 10 October 2012

Aquarium



An aquarium (plural aquariums or aquaria) is a vivarium consisting of at least one transparent side in which water-dwelling plants or animals are kept. Fishkeepers use aquaria to keep fish, invertebrates, amphibians, marine mammals, turtles, and aquatic plants. The term combines the Latin root aqua, meaning water, with the suffix -arium, meaning "a place for relating to".
An aquarist owns fish or maintains an aquarium, typically constructed of glass or high strength acrylic plastic. Cuboid aquaria are also known as fish tanks or simply tanks, while bowl-shaped aquaria are also known as fish bowls. Size can range from a small glass bowl to immense public aquaria. Specialized equipment maintains appropriate water quality and other characteristics suitable for the aquarium's residents.


Antiquity



Goldfish in a glass: portrait of Therese Krones, 1824
In the Roman Empire, the first fish to be brought indoors was the sea barbel, which was kept under guest beds in small tanks made of marble. Introduction of glass panes around the year 50 allowed Romans to replace one wall of marble tanks, improving their view of the fish. In 1369, the Chinese Emperor, Hóngwǔ, established a porcelain company that produced large porcelain tubs for maintaining goldfish; over time, people produced tubs that approached the shape of modern fish bowls. Leonhard Baldner, who wrote Vogel-, Fisch- und Tierbuch (Bird, Fish, and Animal Book) in 1666, maintained weather loaches and newts.


An aquarium of the 1850s containingVallisneria spiralis and coldwater fish


Nineteenth century


In 1836, soon after his invention of the Wardian case, Dr. Nathaniel Bagshaw Ward proposed to use his tanks for tropical animals. In 1841 he did so, though only with aquatic plants and toy fish. However, he soon housed real animals. In 1838, Félix Dujardin noted owning a saltwater aquarium, though he did not use the term. In 1846, Anne Thynne maintained stony corals and seaweed for almost three years, and was credited as the creator of the first balanced marine aquarium in London. At about the same time, Robert Warington experimented with a 13-gallon container, which contained goldfish, eelgrass, and snails, creating one of the first stable aquaria. He published his findings in 1850 in the Chemical Society's journal.

The keeping of fish in an aquarium became a popular hobby and spread quickly. In the United Kingdom, it became popular after ornate aquaria in cast iron frames were featured at the Great Exhibition of 1851[citation needed]. In 1853, the first large public aquarium opened in the London Zoo and came to be known as the Fish House. Philip Henry Gosse was the first person to actually use the word "aquarium", opting for this term (instead of "aquatic vivarium" or "aqua-vivarium") in 1854 in his book The Aquarium: An Unveiling of the Wonders of the Deep Sea. In this book, Gosse primarily discussed saltwater aquaria. In the 1850s, the aquarium became a fad in the United Kingdom. Tank designs and techniques for maintaining water quality were developed by Warington, later cooperating with Gosse until his critical review of the tank water composition. Edward Edwards developed these glass-fronted aquaria in his 1858 patent for a "dark-water-chamber slope-back tank", with water slowly circulating to a reservoir beneath.

Germans soon rivaled the British in their interest. In 1854, an anonymous author had two articles published about the saltwater aquaria of the United Kingdom: Die Gartenlaube (The Garden House) entitled Der Ocean auf dem Tische (The Ocean on the Table). However, in 1856, Der See im Glase (The Lake in a Glass) was published, discussing freshwater aquaria, which were much easier to maintain in landlocked areas. During the 1870s, some of the first aquarist societies were appearing in Germany. The United States soon followed. Published in 1858, Henry D. Butler's The Family Aquarium was one of the first books written in the United States solely about the aquarium. According to the July issue of The North American Review of the same year, William Stimson may have owned some of the first functional aquaria, and had as many as seven or eight. The first aquarist society in the United States was founded in New York City in 1893, followed by others. The New York Aquarium Journal, first published in October 1876, is considered to be the world's first aquarium magazine.
In the Victorian era in the United Kingdom, a common design for the home aquarium was a glass front with the other sides made of wood (made watertight with a pitch coating). The bottom would be made of slate and heated from below. More advanced systems soon began to be introduced, along with tanks of glass in metal frames. During the latter half of the 19th century, a variety of aquarium designs were explored, such as hanging the aquarium on a wall, mounting it as part of a window, or even combining it with a birdcage.

Twentieth century

Circa 1908, the first mechanical aquarium air pump was invented, powered by running water, instead of electricity. The introduction of the air pump into the hobby is considered by several historians of the hobby to be a pivotal moment in its development.


An aquarium in the Burj Al Arab in Dubai
Aquaria became more widely popular as houses had an electricity supply after World War I. Electricity allowed artificial lighting as well as aeration, filtration, and heating of the water. Initially, amateur aquarists kept native fish (with the exception of goldfish); the availability of exotic species from overseas further increased the popularity of the aquarium. Jugs made from a variety of materials were used to import fish from overseas, with a bicycle foot pump for aeration. Plastic shipping bags were introduced in the 1950s, making it easier to ship fish. The eventual availability of air freight allowed fish to be successfully imported from distant regions. In the 1960s metal frames made marine aquaria almost impossible due to corrosion, but the development of tar and silicone sealant allowed the first all-glass aquaria made by Martin Horowitz in Los Angeles, CA. The frames remained, however, though purely for aesthetic reasons.
In the United States, as of 1996, aquarium keeping is the second-most popular hobby after stamp collecting. In 1999 it was estimated that over nine million U.S. households own an aquarium. Figures from the 2005/2006 APPMA National Pet Owners Survey report that Americans own approximately 139 million freshwater fish and 9.6 million saltwater fish. Estimates of the numbers of fish kept in aquaria in Germany suggest at least 36 million. The hobby has the strongest following in Europe, Asia, and North America. In the United States, 40 percent of aquarists maintain two or more tanks.

Materials

Most aquaria consist of glass panes bonded together by silicone, with plastic frames that are attached to the upper and lower edges for decoration. The glass aquarium is standard for sizes up to about 1,000 litres (260 US gal). However, glass as a material is brittle and has very little give before fracturing, though generally the sealant fails first. Aquaria come in a variety of shapes such as cuboid, hexagonal, angled to fit in a corner (L-shaped), and bow-front (the front side curves outwards). Fish bowls are generally either made of plastic or glass, and are either spherical or some other round configuration in shape.
The very first modern aquarium made of glass was developed in the 19th century by Robert Warrington. During the Victorian age it was common for glass aquaria to have slate or steel bottoms, which allowed the aquaria to be heated underneath with an open flame heat source. The aquaria in those days had the glass panels attached with metal frames and sealed with putty. These metal framed aquaria were still available on the market until the mid 1960s when the modern, silicone-sealed style replaced them. Acrylic tanks were not generally available to the public until the 1970s.


This aquarium features a heated tank and a glass-enclosed top for warmth during winter.
Although glass aquaria are usually preferred by aquarists over the acrylic ones because of their resistance to scratching and much more accessible price, they come with several disadvantages. Not only are they not as crack resistant as acrylic tanks but they are also nearly two times heavier than the latter. They also provide less insulation than acrylic aquaria and do not come in as many interesting shapes. Many aquarists or beginners who want to get fish as pets find it particularly onerous that many online suppliers will not ship glass aquaria because of the high potential for cracking and the high weight, which increases the cost of shipping. However, glass tanks are more convenient for other aquarists because unlike acrylic, glass does not yellow over time, and also because glass tanks do not need as much support as acrylic aquaria.
Even though the price is one of the main considerations for aquarists when deciding which of these two types of aquaria to purchase, when it comes to very large tanks the price difference tends to disappear.
Acrylic aquaria are also available and are the primary competitor with glass. Acrylic aquaria are stronger than glass, and much lighter. Acrylic-soluble cements are used to directly fuse acrylic together (as opposed to simply sealing the seam). Acrylic allows for the formation of unusual shapes, such as the hexagonal tank. Compared to glass, acrylics are easy to scratch; but unlike glass, it is possible to polish out scratches in acrylic.
Laminated glass is sometimes used, which combines the advantages of both glass and acrylic.
Large aquaria might instead use stronger materials such as fiberglass-reinforced plastics. However, this material is not transparent. Reinforced concrete is used for aquaria where weight and space are not factors. Concrete must be coated with a waterproof layer to prevent the water from breaking down the concrete as well as preventing contamination of the water by the concrete.

Styles



This aquarium features a heated tank and a glass-enclosed top for warmth during winter.
Aquariums have been fashioned into coffee tables, sinks, and even toilets. Another such example is the MacQuarium, an aquarium made from the shell of an Apple Macintosh computer. In recent years, elaborate custom-designed home aquariums costing hundreds of thousands of dollars have become status symbols—according to The New York Times, "among people of means, a dazzling aquarium is one of the last surefire ways to impress their peers."



A kreisel tank is a circular aquarium designed to hold delicate animals such as jellyfish. These aquariums provide slow, circular water flow with a bare minimum of interior hardware, to prevent delicate animals from becoming injured by pumps or the tank itself. Originally a German design (kreisel means spinning top), the tank has no sharp corners, and keeps the housed animals away from the plumbing. Water moving into the tank gives a gentle flow that keeps the inhabitants suspended, and water leaving the tank is covered by a delicate screen that prevents the inhabitants from getting stuck. There are several types of kreisel tanks. In a true kreisel, a circular tank has a circular, submerged lid. Pseudokreisels have a curved bottom surface and a flat top surface, similar to the shape of either a "U" or a semicircle. Stretch kreisels or Langmuir kreisels are a "double gyre" kreisel design, where the tank length is at least twice the height. Using two downwelling inlets on both sides of the tank lets gravity create two gyres in the tank. A single downwelling inlet may be used in the middle as well. The top of a stretch kreisel may be open or closed with a lid. There may also be screens about midway down the sides of the tank, or at the top on the sides. It is possible to combine these designs; a circular shaped tank is used without a lid or cover, and the surface of the water acts as the continuation of circular flow. It is now possible to start a jellyfish aquarium at home as easily as a regular fish tank.
Another popular setup is the biotope aquarium. A biotope aquarium is a recreation of a specific natural environment. Some of the most popular biotopes (to name only a few) are the Amazon river, Rio Negro River, Lake Malawi, Lake Tanganyika, and Lake Victoria. The fish, plants, substrate, rocks, wood, and any other component of the display should match that of the natural environment. It can be a real challenge to recreate such environments and most "true" biotopes will only have a few species of fish (if not only one) and invertebrates.
Aquarium size and volume
Photo - silhouettes of people in foreground. One large fish with many smaller fish in background.


The 80-meter (260 ft) underwater tunnel in Aquarium Barcelona
An aquarium can range from a small glass bowl containing less than 1 litre (2.1 US pt) of water to immense public aquaria that house entire ecosystems such as kelp forests. Relatively large home aquaria resist rapid fluctuations of temperature and pH, allowing for greater system stability.
Unfiltered bowl-shaped aquaria are now widely regarded as unsuitable for most fish. Advanced alternatives are now available. In order to keep water conditions at suitable levels, aquariums should contain at least two forms of filtration: biological and mechanical. Chemical filtration should also be considered under some circumstances for optimum water quality. Chemical filtration is frequently achieved via activated carbon, to filter medications, tannins, and/or other known impurities from the water.
Reef aquaria under 100 litres (26 US gal) have a special place in the aquarium hobby; these aquaria, termed nano reefs (when used in reefkeeping), have a small water volume.


Lisbon Oceanarium designed by architect Peter Chermayeff
Practical limitations, most notably the weight of water (1 kilogram per litre (8.345 lb/U.S. gal)) and internal water pressure (requiring thick glass siding) of a large aquarium, restrict most home aquaria to a maximum of around 1 cubic metre in volume (1000 L, weighing 1,000 kg or 2,200 lb). Some aquarists, however, have constructed aquaria of many thousands of litres.
Public aquariums designed for exhibition of large species or environments can be dramatically larger than any home aquarium. The Georgia Aquarium, for example, features an individual aquarium of 6,300,000 US gallons (24,000 m3).

Components

Drawing of transparent 3-dimensional rectangle with two boxes and one cylinder above it and one longer, thin cylinder within it. Arrows point from the rectangle long cylinder to the top box, from the top box to the lower box, from the lower box to the other cylinder, from that cylinder back to itself, and from the cylinder to the rectangle.

Filtration system in a typical aquarium: (1) intake, (2) mechanical filtration, (3) chemical filtration, (4) biological filtration medium, (5) outflow to tank
The typical hobbyist aquarium includes a filtration system, an artificial lighting system, and a heater or chiller depending on the aquarium's inhabitants. Many aquaria incorporate a hood, to decrease evaporation and prevent fish from leaving the aquarium (and anything else from entering the aquarium). They also often hold lights.
Combined biological and mechanical aquarium filtration systems are common. These either convert ammonia to nitrate (removing nitrogen at the expense of aquatic plants), or to sometimes remove phosphate. Filter media can house microbes that mediate nitrification. Filtration systems are the most complex component of home aquaria.
Aquarium heaters combine a heating element with a thermostat, allowing the aquarist to regulate water temperature at a level above that of the surrounding air, whereas coolers and chillers (refrigeration devices) are for use anywhere, such as cold water aquaria, where the ambient room temperature is above the desired tank temperature. Thermometers used include glass alcohol thermometers, adhesive external plastic strip thermometers, and battery-powered LCD thermometers. In addition, some aquarists use air pumps attached to airstones or water pumps to increase water circulation and supply adequate gas exchange at the water surface. Wave-making devices have also been constructed to provide wave action.
An aquarium's physical characteristics form another aspect of aquarium design. Size, lighting conditions, density of floating and rooted plants, placement of bog-wood, creation of caves or overhangs, type of substrate, and other factors (including an aquarium's positioning within a room) can all affect the behavior and survival of tank inhabitants.
An aquarium can be placed on an aquarium stand. Because of the weight of the aquarium, a stand must be strong as well as level. A tank that is not level may distort, leak, or crack. These are often built with cabinets to allow storage, available in many styles to match room decor. Simple metal tank stands are also available. Most aquaria should be placed on polystyrene to cushion any irregularities on the underlying surface or the bottom of the tank itself. However, some tanks have an underframe making this unnecessary.
Aquarium maintenance

Photo of 50-foot-tall (15 m) yellow plants in water behind glass wall divided into sections.

A 335,000 U.S. gallon (1.3 million liter) aquarium at the Monterey Bay Aquarium in California, displaying a kelp forest ecosystem

Large volumes of water enable more stability in a tank by diluting effects from death or contamination events that push an aquarium away from equilibrium. The bigger the tank, the easier such a systemic shock is to absorb, because the effects of that event are diluted. For example, the death of the only fish in a three U.S. gallon tank (11 L) causes dramatic changes in the system, while the death of that same fish in a 100 U.S. gallon (400 L) tank with many other fish in it represents only a minor change. For this reason, hobbyists often favor larger tanks, as they require less attention.
Several nutrient cycles are important in the aquarium. Dissolved oxygen enters the system at the surface water-air interface. Similarly, carbon dioxide escapes the system into the air. The phosphate cycle is an important, although often overlooked, nutrient cycle. Sulfur, iron, and micronutrients also cycle through the system, entering as food and exiting as waste. Appropriate handling of the nitrogen cycle, along with supplying an adequately balanced food supply and considered biological loading, is enough to keep these other nutrient cycles in approximate equilibrium.
An aquarium must be maintained regularly to ensure that the fish are kept healthy. Daily maintenance consists of checking the fish for signs of stress and disease. Also, aquarists must make sure that the water has a good quality and it is not cloudy or foamy and the temperature of the water is appropriate for the particular species of fish that live in the aquarium.
Typical weekly maintenance includes changing around 10-20% of the water while cleaning the gravel, or other substrate if the aquarium has one. A good habit is to remove the water being replaced by "vacuuming" the gravel with suitable implements, as this will eliminate uneaten foods and other residues that settle on the substrate.Tap water is not considered to be safe for fish to live in because it contains chemicals that harm the fish, so any tap water used must be treated with a suitable water conditioner, such as a product which removes chlorine and chloramine, and neutralises any heavy metals present. The water parameters must be checked both in the tank and in the replacing water, to make sure they are suitable for the species of fish kept.
Water conditions
The solute content of water is perhaps the most important aspect of water conditions, as total dissolved solids and other constituents dramatically impact basic water chemistry, and therefore how organisms interact with their environment. Salt content, or salinity, is the most basic measure of water conditions. An aquarium may have freshwater (salinity below 500 parts per million), simulating a lake or river environment; brackish water (a salt level of 500 to 30,000 PPM), simulating environments lying between fresh and salt, such as estuaries; and salt water or seawater (a salt level of 30,000 to 40,000 PPM), simulating an ocean environment. Rarely, higher salt concentrations are maintained in specialized tanks for raising brine organisms.
Saltwater is typically alkaline, while the pH (alkalinity or acidicity) of fresh water varies more. Hardness measures overall dissolved mineral content; hard or soft water may be preferred. Hard water is usually alkaline, while soft water is usually neutral to acidic. Dissolved organic content and dissolved gases content are also important factors.


A typical home 10 US gallons (38 L) tropical freshwater aquarium
Home aquarists typically use tap water supplied through their local water supply network to fill their tanks. Straight tap water cannot be used in localities that pipe chlorinated water. In the past, it was possible to "condition" the water by simply letting the water stand for a day or two, which allows the chlorine time to dissipate. However, chloramine is now used more often and does not leave the water as readily. Additives formulated to remove chlorine or chloramine are often all that is needed to make the water ready for aquarium use. Brackish or saltwater aquaria require the addition of a commercially available mixture of salts and other minerals.
Some aquarists modify water's alkalinity, hardness, or dissolved content of organics and gases, before adding it to their aquaria. This can be accomplished by additives, such as sodium bicarbonate, to raise pH. Some aquarists filter or purify their water through deionization or reverse osmosis prior to using it. In contrast, public aquaria with large water needs often locate themselves near a natural water source (such as a river, lake, or ocean) to reduce the level of treatment. Some hobbyists use an algae scrubber to filter the water naturally.
Water temperature determines the two most basic aquarium classifications: tropical versus cold water. Most fish and plant species tolerate only a limited temperature range; tropical aquaria, with an average temperature of about 25 °C (77 °F), are much more common. Cold water aquaria are for fish that are better suited to a cooler environment. More important than the range is consistency; most organisms are not accustomed to sudden changes in temperatures, which can cause shock and lead to disease. Water temperature can be regulated with a thermostat and heater (or cooler).
Water movement can also be important in simulating a natural ecosystem. Aquarists may prefer anything from still water up to swift currents, depending on the aquarium's inhabitants. Water movement can be controlled via aeration from air pumps, powerheads, and careful design of internal water flow (such as location of filtration system points of inflow and outflow).

Nitrogen cycle




The nitrogen cycle in an aquarium

Main article: Nitrogen cycle
Of primary concern to the aquarist is management of the waste produced by an aquarium's inhabitants. Fish, invertebrates, fungi, and some bacteria excrete nitrogen waste in the form of ammonia (which converts to ammonium, in acidic water) and must then either pass through the nitrogen cycle or be removed by passing through zeolite. Ammonia is also produced through the decomposition of plant and animal matter, including fecal matter and other detritus. Nitrogen waste products become toxic to fish and other aquarium inhabitants at high concentrations.
The process
A well-balanced tank contains organisms that are able to metabolize the waste products of other aquarium residents. This process is known in the aquarium hobby as the nitrogen cycle. Bacteria known as nitrifiers (genus Nitrosomonas) metabolize nitrogen waste. Nitrifying bacteria capture ammonia from the water and metabolize it to produce nitrite.[citation needed] Nitrite is toxic to fish in high concentrations. Another type of bacteria (genus Nitrospira) converts nitrite into nitrate, a less toxic substance. (Nitrobacter bacteria were previously believed to fill this role. While biologically they could theoretically fill the same niche as Nitrospira, it has recently been found that Nitrobacter are not present in detectable levels in established aquaria, while Nitrospira are plentiful.)[citation needed] However, commercial products sold as kits to "jump start" the nitrogen cycle often still contain Nitrobacter.
In addition to bacteria, aquatic plants also eliminate nitrogen waste by metabolizing ammonia and nitrate. When plants metabolize nitrogen compounds, they remove nitrogen from the water by using it to build biomass that decays more slowly than ammonia-driven plankton already dissolved in the water.
Maintaining the nitrogen cycle
What hobbyists call the nitrogen cycle is only a portion of the complete cycle: nitrogen must be added to the system (usually through food provided to the tank inhabitants), and nitrates accumulate in the water at the end of the process, or become bound in the biomass of plants. The aquarium keeper must remove water once nitrate concentrations grow, or remove plants which have grown from the nitrates.
Hobbyist aquaria often do not have sufficient bacteria populations to adequately denitrify waste. This problem is most often addressed through two filtration solutions: Activated carbon filters absorb nitrogen compounds and other toxins, while biological filters provide a medium designed to enhance bacterial colonization. Activated carbon and other substances, such as ammonia absorbing resins, stop working when their pores fill, so these components have to be replaced regularly.
New aquaria often have problems associated with the nitrogen cycle due to insufficient beneficial bacteria. Therefore fresh water has to be matured before stocking them with fish. There are three basic approaches to this: the "fishless cycle", the "silent cycle" and "slow growth".
In a fishless cycle, small amounts of ammonia are added to an unpopulated tank to feed the bacteria. During this process, ammonia, nitrite, and nitrate levels are tested to monitor progress. The "silent" cycle is basically nothing more than densely stocking the aquarium with fast-growing aquatic plants and relying on them to consume the nitrogen, allowing the necessary bacterial populations time to develop. According to anecdotal reports, the plants can consume nitrogenous waste so efficiently that ammonia and nitrite level spikes seen in more traditional cycling methods are greatly reduced or disappear. "Slow growth" entails slowly increasing the population of fish over a period of 6 to 8 weeks, giving bacteria colonies time to grow and stabilize with the increase in fish waste. This method is usually done with a small starter population of hardier fish which can survive the ammonia and nitrite spikes, whether they are intended to be permanent residents or to be traded out later for the desired occupants.
The largest bacterial populations are found in the filter, where is high water flow and plentiful surface available for their growth, so effective and efficient filtration is vital. Sometimes, a vigorous cleaning of the filter is enough to seriously disturb the biological balance of an aquarium. Therefore, it is recommended to rinse mechanical filters in an outside bucket of aquarium water to dislodge organic materials that contribute to nitrate problems, while preserving bacteria populations. Another safe practice consists of cleaning only half of the filter media during each service, or using two filters, only one of which is cleaned at a time.

Biological loading

Biological load is a measure of the burden placed on the aquarium ecosystem by its inhabitants. High biological loading presents a more complicated tank ecology, which in turn means that equilibrium is easier to upset. Several fundamental constraints on biological loading depend on aquarium size. The water's surface area limits oxygen intake. The bacteria population depends on the physical space they have available to colonize. Physically, only a limited size and number of plants and animals can fit into an aquarium while still providing room for movement. Biologically, biological loading refers to the rate of biological decay in proportion to tank volume. Adding plants to an aquarium will sometimes help greatly with taking up fish waste as plant nutrients. Although an aquarium can be overloaded with fish, an excess of plants is unlikely to cause harm.
Calculating capacity
Limiting factors include the oxygen availability and filtration processing. Aquarists have rules of thumb to estimate the number of fish that can be kept in an aquarium. The examples below are for small freshwater fish; larger freshwater fishes and most marine fishes need much more generous allowances.
3 cm of adult fish length per 4 litres of water (i.e., a 6 cm-long fish would need about 8 litres of water).
1 cm of adult fish length per 30 square centimetres of surface area.
1 inch of adult fish length per US gallon of water.
1 inch of adult fish length per 12 square inches of surface area.
Experienced aquarists warn against applying these rules too strictly because they do not consider other important issues such as growth rate, activity level, social behaviour, filtration capacity, total biomass of plant life, and so on. Establishing maximum capacity is often a matter of slowly adding fish and monitoring water quality over time, following a trial and error approach.
Other factors affecting capacity
One variable is differences between fish. Smaller fish consume more oxygen per gram of body weight than larger fish. Labyrinth fish can breathe atmospheric oxygen and do not need as much surface area (however, some of these fish are territorial, and do not appreciate crowding). Barbs also require more surface area than tetras of comparable size.
Oxygen exchange at the surface is an important constraint, and thus the surface area of the aquarium matters. Some aquarists claim that a deeper aquarium holds no more fish than a shallower aquarium with the same surface area. The capacity can be improved by surface movement and water circulation such as through aeration, which not only improves oxygen exchange, but also waste decomposition rates.
Waste density is another variable. Decomposition in solution consumes oxygen. Oxygen dissolves less readily in warmer water; this is a double-edged sword since warmer temperatures make fish more active, so they consume more oxygen.
In addition to bioload/chemical considerations, aquarists also consider the mutual compatibility of the fish. For instance, predatory fish are usually not kept with small, passive species, and territorial fish are often unsuitable tankmates for shoaling species. Furthermore, fish tend to fare better if given tanks conducive to their size. That is, large fish need large tanks and small fish can do well in smaller tanks. Lastly, the tank can become overcrowded without being overstocked. In other words, the aquarium can be suitable with regard to filtration capacity, oxygen load, and water, yet still be so crowded that the inhabitants are uncomfortable.

Aquarium classifications

Photo showing a tank filled with water and multiple aquatic plants.


A planted freshwater aquarium
From the outdoor ponds and glass jars of antiquity, modern aquaria have evolved into a wide range of specialized systems. Individual aquaria can vary in size from a small bowl large enough for only a single small fish, to the huge public aquaria that can simulate entire marine ecosystems.
One way to classify aquaria is by salinity. Freshwater aquaria are the most popular due to their lower cost. More expensive and complex equipment is required to set up and maintain a marine aquaria. Marine aquaria frequently feature a diverse range of invertebrates in addition to species of fish. Brackish water aquaria combine elements of both marine and freshwater fishkeeping. Fish kept in brackish water aquaria generally come from habitats with varying salinity, such as mangrove swamps and estuaries. Subtypes exist within these types, such as the reef aquarium, a typically smaller marine aquarium that houses coral.
Another classification is by temperature range. Many aquarists choose a tropical aquarium because tropical fish tend to be more colorful. However, the coldwater aquarium is also popular, which is mainly restricted to goldfish, but can include fish from temperate areas worldwide and native fish keeping.

Photo of water, coral, and fish behind a glass wall.


saltwater aquarium
Aquaria may be grouped by their species selection. The community tank is the most common today, where several non-aggressive species live peacefully. In these aquaria, the fish, invertebrates, and plants probably do not originate from the same geographic region, but tolerate similar water conditions. Aggressive tanks, in contrast, house a limited number of species that can be aggressive toward other fish, or are able to withstand aggression well. Most marine tanks and tanks housing cichlids have to take the aggressiveness of the desired species into account when stocking. Specimen tanks usually only house one fish species, along with plants, perhaps ones found in the fishes' natural environment and decorations simulating a natural ecosystem. This type is useful for fish that cannot coexist with other fish, such as the electric eel, as an extreme example. Some tanks of this sort are used simply to house adults for breeding.
Ecotype, ecotope, or biotope aquaria is another type based on species selection. In it, an aquarist attempts to simulate a specific natural ecosystem, assembling fish, invertebrate species, plants, decorations and water conditions all found in that ecosystem. These biotope aquaria are the most sophisticated hobby aquaria; public aquaria use this approach whenever possible. This approach best simulates the experience of observing in the wild. It typically serves as the healthiest possible artificial environment for the tank's occupants.

Photo looking upward through 15 feet (4.6 m)-diameter glass tube into a fish-filled aquarium


Tunnel at the world's largest aquarium,Georgia Aquarium, USA

 Public aquarium

Most public aquarium facilities feature a number of smaller aquaria, as well those too large for home aquarists. The largest tanks hold millions of gallons of water and can house large species, including sharks or beluga whales. Dolphinaria are specifically for dolphins. Aquatic and semiaquatic animals, including otters and penguins, may also be kept by public aquaria. Public aquaria may also be included in larger establishments such as a marine mammal park or a marine park.
Virtual aquariums

A virtual aquarium is a computer program which uses 3D graphics to reproduce an aquarium on a personal computer. The swimming fish are rendered in real time, while the background of the tank is usually static. Objects on the floor of the tank may be mapped in simple planes so that the fish may appear to swim both in front and behind them, but a relatively simple 3D map of the general shape of such objects may be used to allow the light and ripples on the surface of the water to cast realistic shadows. Bubbles and water noises are common for virtual aquariums, which are often used as screensavers.
The number of each type of fish can usually be selected, often including other animals like starfish, jellyfish, seahorses, and even sea turtles. Most companies that produce virtual aquarium software also offer other types of fish for sale via Internet download. Other objects found in an aquarium can also be added and rearranged on some software, like treasure chests and giant clams that open and close with air bubbles, or a bobbing diver. There are also usually features that allow the user to tap on the glass or put food in the top, both of which the fish will react to. Some also have the ability to allow the user to edit fish and other objects to create new varieties.



Tuesday 9 October 2012

Angel Fish






Angelfish





Pterophyllum is a small genus of freshwater fish from the family Cichlidae known to most aquarists as "Angelfish". All Pterophyllum species originate from the Amazon River, Orinoco River and Essequibo River basins in tropical South America. The three species of Pterophyllum are unusually shaped for cichlids being greatly laterally compressed, with round bodies and elongated triangular dorsal and anal fins. This body shape allows them to hide among roots and plants, often on a vertical surface. Naturally occurring angelfish are frequently striped longitudinally, colouration which provides additional camouflage. Angelfish are ambush predators and prey on small fish and macroinvertebrates. All Pterophyllum species form monogamous pairs. Eggs are generally laid on a submerged log or a flattened leaf. As is the case for other cichlids, brood care is highly developed.

Angelfish are one of the most commonly kept freshwater aquarium fish, as well as the most commonly kept cichlid. They are prized for their unique shape, color and behavior.
[edit]Species
The most commonly kept species in the aquarium is Pterophyllum scalare. Most of the individuals the aquarium trade are captive-bred. Sometimes, Pterophyllum altum is available. Captive bred P. altum is available but occasionally. Pterophyllum leopoldi is the hardest to find in the trade.
[edit]Care
Angelfish are kept in a warm aquarium, ideally around 80 °F (27 °C). They will do best if fed a mixture of flake, frozen and live food. Care should be taken to not overfeed, they will continue to eat even what they do not need to. This will lead to a buildup of fats resulting in inactivity and early death. Angelfish will do best if kept in an acidic environment, pH should be below 7.5 (note: 7.5 is still slightly alkaline – acidic is defined as below 7.0). All angelfish will prefer water with a pH of at most 7.0. Though most Pterophyllum scalare will thrive in a wide range of pH values. Even though angelfish are a member of the Cichlid family they are generally peaceful, however; the general rule "big fish eat little fish" applies. Small fish such as the Cardinal Tetra will be eaten, as they can be picked off during the night. Aggressive fish should not be kept with angelfish because their flowing fins are vulnerable to fin nipping. Some smaller more aggressive fish may even nip at the fins of these fish. Angelfish also enjoy blackwater aquariums with plentiful wood and dark places to relax.
[edit]Breeding
P. scalare is relatively easy to breed in the aquarium, although one of the results of generations of inbreeding is that many breeds have almost completely lost their rearing instincts resulting in the tendency of the parents to eat their young. In addition, it is very difficult to accurately identify the gender of any individual until they are nearly ready to breed.
Angelfish pairs form long-term relationships where each individual will protect the other from threats and potential suitors. Upon the death or removal of one of the mated pair, breeders have experienced both the total refusal of the remaining mate to pair up with any other angelfish and successful breeding with subsequent mates.
Depending upon aquarium conditions, P. scalare reaches sexual maturity at the age of six to twelve months or more. In situations where the eggs are removed from the aquarium immediately after spawning, the pair is capable of spawning every seven to ten days. Around the age of approximately three years, spawning frequency will decrease and eventually cease.
When the pair is ready to spawn, they will choose an appropriate medium upon which to lay the eggs and spend one to two days picking off detritus and algae from the surface. This medium may be a broad-leaf plant in the aquarium, a flat surface such as a piece of slate placed vertically in the aquarium, a length of pipe, or even the glass sides of the aquarium. The female will deposit a line of eggs on the spawning substrate, followed by the male who will fertilize the eggs. This process will repeat itself until there are a total of 100 to more than 1,200 eggs, depending on the size and health of the female fish. As both parents care for the offspring throughout development, the pair will take turns maintaining a high rate of water circulation around the eggs by swimming very close to the eggs and fanning the eggs with their pectoral fins. In a few days, the eggs hatch and the fry remain attached to the spawning substrate. During this period, the fry will not eat and will survive by consuming the remains of their yolk sacs. At one week, the fry will detach and become free-swimming. Successful parents will keep close watch on the eggs until they become free-swimming. At the free-swimming stage, the fry can be fed newly-hatched brine shrimp (Artemia spp.) or microworms. It is generally accepted that brine shrimp are the superior choice for fast growth rates of fry.

Thursday 4 October 2012

Sebae Anemone


Great starter Anemone for beginners. "Should never be purchased bleached white". A healthy specimen should hold color similar to the photo, or should have a tan appearance, and it's mouth should be close shut, not gaping open. If obtained bleached, it can be restored back to health with proper conditions, feeding, and intense lighting. Can take 6 months to a year before it regains color and develops healthy Zooxanthellae Pigmentation.

Apple Snail





Ampullariidae, common name the apple snails, is a family of large freshwater snails, aquatic gastropod mollusks with a gill and an operculum. This family is in the superfamily Ampullarioidea and is the type family of that superfamily.[4]
The Ampullariidae are unusual because they have both a gill and a lung, the mantle cavity being divided in order to separate the two types of respiratory structures. This adaptation allows these snails to be amphibious.
Apple snails are exceptionally well adapted to tropical regions characterized by periods of drought alternating with periods of high rainfall. This adaptation is reflected in their life style; they are moderately amphibious. They have an operculum which enables the snail to seal the shell entrance to prevent drying out while they are buried in the mud during dry periods.
One of the more typical adaptations of apple snails is the branchial respiration. The snail has a system comparable to the gills of a fish (at the right side of the snail body) to breathe under water as well as a lung (at the left side of the body) to respirate air. This lung/gill combination expands the action radius of the snail in search for food. It is part of the snail's natural behaviour to leave the water when the food supply below the surface becomes inadequate.


Pomacea canaliculata eggs.

Several apple snail genera (Pomacea, Pila and Asolene/Pomella) deposit eggs above the waterline in calcareous clutches. This remarkable strategy of aquatic snails protects the eggs against predation by fish and other aquatic inhabitants. Another anti-predator adaptation in the apple snail genera Pomacea and Pila, is the tubular siphon, used to breathe air while submerged, reducing vulnerability to attacking birds. The apple snail's usual enemies are the birds Limpkin and Snail Kite.
Apple snails inhabit various ecosystems: ponds, swamps and rivers. Although they occasionally leave the water, they spend most of their time under water. Unlike the pulmonate snail families, apple snails are not hermaphroditic, but gonochoristic; i.e. they have separate genders. 
       
Apple snails are popular aquarium pets because of their attractive appearance and size. When properly cared for, some apple snail species can reach 15 cm (5.9 in) diameter. Apple snails include species that are the biggest living freshwater snails on Earth.
The most common apple snail in aquarium shops is Pomacea bridgesii, also called Pomacea diffusa, (the spike-topped apple snail). This species comes in different colours from brown to albino or yellow and even blue, purple, pink, and jade, with or without banding. Another common apple snail is Pomacea canaliculata; this snail is bigger, rounder and is more likely to eat aquatic plants, which makes it less suitable for most aquaria. This species can also have different shell and body colours. The "giant ramshorn snail" (Marisa cornuarietis) although not always recognized as an apple snail due to its discoidal shape, is also a popular aquatic pet. Occasionally, the Florida apple snail (Pomacea paludosa) is found in the aquarium trade and these are often collected in the wild from ditches and ponds in Florida. The giant Pomacea maculata is rarely used as an aquarium species.
Apple snails are often sold under the name "golden (ivory, blue, black...) mystery snail" and they are given incorrect names like Ampullarius for the genus instead of Pomacea and wrong species names like gigas instead of maculata.
These snails sometimes become inactive (especially when first introduced to a new tank, probably from the stress of moving from one habitat to another), and may not move for several days, but once the snail is acclimated it becomes active again.



Wednesday 3 October 2012

Goliath Tiger Fish



Grows like goliath, hunts like a tiger and swims like a fish. The Goliath Tigerfish lurks the waters of the Congo River system and several other lakes in southern Africa. This fish is remarkably adept at swimming and killing due in part to an air-filled sac in its body that allows it to detect vibrations from animals in 
the water. Those razorsharp spikes in its mouth may also help the cause.